PP36712 and PP36713. Proposed by Pirkuliyev Rovsen.

If
$$x \in \left(0, \frac{\pi}{2}\right)$$
, then prove:
a) $\cos x \left(2^{\frac{1}{\sin x}} - 1\right) > 2^{\cot x} - 1$;
b) $\sin x \left(2^{\frac{1}{\cos x}} - 1\right) > 2^{\tan x} - 1$.

Solution by Arkady Alt, San Jose,California, USA. Solution 1.

First we will prove that for any $a, b \in (0, 1)$ holds inequality (1) $a(2^{1/b} - 1) > 2^{a/b} - 1$.

Let $t := 2^{1/b}$. Then t > 1 and inequality (1) becomes $a(t-1) > t^a - 1$. By Mean Value Theorem there is $c \in (1, \infty)$ such that $\frac{t^a - 1}{t - 1} = ac^{a-1}$. Since a - 1 < 0 and c > 1 then $ac^{a-1} < a$ and, therefore, $\frac{t^a - 1}{t - 1} < a \Leftrightarrow a(t-1) > t^a - 1$.

By replacing (a, b) in inequality (1) with $(\cos x, \sin x)$ and $(\sin x, \cos x)$ we obtain, respectively, inequalities in **a**) and **b**).

Solution 2.(Without Mean Value Therem).

By replacing in Bernoulli 2 Inequality $(1 + x)^p \le 1 + px$, $x > -1, p \in (0, 1]$ (x,p) with (t - 1, a) we obtain $t^a = (1 + (t - 1))^a < 1 + a(t - 1) \Leftrightarrow$ $t^a - 1 < a(t - 1)$ (because equality occurs iff t = 1 or a = 1 but in our case t - 1 > 0 and 0 < a < 1), Also, by Weighted AM-GM Inequality $1 + a(t - 1) = 1 - a + at > 1^{1-a} \cdot t^a = t^a \Leftrightarrow a(t - 1) > t^a - 1$ (not \ge by the same reason as above).